Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 18(3): 3199-209, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174159

RESUMO

In many metrological applications the data being measured is associated to the phase difference codified in two fringe patterns. This phase difference can be recovered directly with what are called Differential Phase Shifting Algorithms (DPSAs) by using a combination of irradiance values from both patterns in the arctangent argument. Use of such algorithms requires characterisation mechanisms to inform of their sensitivity to the various random and systematic error sources, which is the same as for well-studied Phase Shifting Algorithms (PSAs). Thus, we present a new analysis of error propagation for DPSAs taking into account the frequency shifting property of the employed arctangent function. The general analysis is verified for significant specific cases associated to large errors that appear during phase difference evaluation using the Monte Carlo method, which provides a characterisation of a DPSA's sensitivity; this is an alternative to spatial and temporal techniques but has wholly coinciding results. Monte Carlo simulation opens up the possibilities for the analysis of other error types for any DPSA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...